Forum Store Events About Science Research Courses DONATE Login


Science News
& Faculty Articles


Does Information Carry Mass?

faculty article Feb 21, 2020
by Dr. Inés Urdaneta, Resonance Science Foundation Research Scientist

If information carries mass, could it be the dark matter physicists are craving?

The existence of dark energy and dark matter was inferred in order to correctly predict the expansion of the universe and the rotational velocity of galaxies. In this view, dark energy could be the source of the centrifugal force expanding the universe (it is what accounts for the Hubble constant in the leading theories), while dark matter could be the centripetal force (an additional gravity source) necessary to stabilize galaxies and clusters of galaxies, since there isn’t enough ordinary mass to keep them together. Among other hypotheses, dark energy and dark matter are believed to be related to the vacuum fluctuations, and huge efforts have been devoted to detecting it. The fact that no evidence has yet been found calls for a change of perspective that could be due to information theory.

How could we measure the mass...

Continue Reading...

Frame-Dragging Caught in Action

astrophysics science news Feb 14, 2020
by Dr. Amira Val Baker, Resonance Science Research Scientist

An astrophysical system has just demonstrated frame dragging for the first time.

The dragging of space time by a rotating mass, otherwise known as frame-dragging, was predicted by Einstein’s general relativity. Einstein postulated that not only does a mass curve spacetime, but it will also drag local spacetime into motion around itself as it rotates, much like the air in a tornado. The amount of drag is thus directly proportional to the spin.

A few years later, in 1918, Austrian physicists Josef Lense and Hans Thirring predicted that the dragging of spacetime due to a rotating celestial body – frame-dragging – would force a nearby orbiting body into precession. That is, the closer you are to the rotating body, the more you are pulled around with it – which for another rotating body forces its axis of rotation to continuously change direction with the changing pull along the orbit. This effect is now...

Continue Reading...

A Deeper Look into Black Holes

by Dr. Amira Val Baker, Resonance Science Foundation Astrophysicist

A deeper look into one of the most intriguing objects has just been revealed.

Black holes are typically observed by the light given off by the surrounding material, such as accretion disks or high velocity jets known as quasars. In 2015, this was extended to gravitational waves when the first gravitational wave was detected from the merger of a pair of black holes.

Then, last year the first direct picture of a black hole was revealed which captured the shadow of the black hole on the accretion disc. Read more here.

Now a recent international study, led by Dr William Alston of the Cambridge University, has taken it one step further, allowing us to peer into a black hole deeper than ever before.

Utilizing a technique known as X-ray reverberation mapping, the team of scientists set about observing the highly variable active galactic nuclei (AGN) IRAS 13224-3809. Located a mere billion light years away, the bright AGN...

Continue Reading...

Neurons Act Not As Simple Logic Gates, But As Complex, Multi-Unit Processing Systems

by William Brown, Resonance Science Research Scientist

A study published in the journal Science has upended 80 years of conventional wisdom in computational neuroscience that has modeled the neuron as a simple point-like node in a system, integrating signals and passing them along. This neuron-as-integrator model, also known as the “dumb” neuron model, has severely restricted the conception of what a neuron is capable of doing, and hence how neuronal networks and the brain as a whole functions.

This has not only impeded the development of a complete understanding of neuronal activity in the higher brain regions of the cortex, but it has also adversely affected computer science, significantly limiting the development of neuromorphic computational networks because they have been based on an incomplete model. Empirical investigations are now suggesting that scientists re-evaluate neuronal information processing as a much more complex system—one that may not have...

Continue Reading...

The Rotating Universe

By William Brown, Resonance Science Foundation Research Scientist

When looking back into the deep past of the Universe, which means looking out over vast cosmological distances of space, there are observed a peculiar set of galaxies emitting a tremendous amount of energy. These early galaxies, known variously as quasars, blazars, radio galaxies and radio-loud quasars, are all bodies classified as active galactic nuclei. These objects are some of the most energetic phenomena in the universe, if the name blazar was not at all evident of this fact. Active galactic nuclei represent a confirmation of physicist Nassim Haramein’s prediction that black holes are the spacetime structure that forms the seed around which galaxies and stars form. Indeed, it is now widely understood that the early formation of galaxies, producing active galactic nuclei, are in fact due to the action of supermassive black holes – black holes in upwards of a million to a billion solar masses.


Continue Reading...

Is the Universe Expanding at an Accelerated Rate?

by Dr. Amira Val Baker, Resonance Science Foundation Astrophysicist

A new study challenges the cosmological model and suggests that the universe is not expanding at an accelerated rate.

The standard model of cosmology assumes that the universe is isotropic with no preferred direction and no preferred frame of reference; that is, we are not special and our position in the universe is not from a privileged vantage point. Within this framework, observational data led us to the conclusion that 70% of the universe is expanding at an accelerated rate, and this accelerating force is due to an unknown form of energy known as ‘dark energy’. This so-called ‘dark energy’ is now thought to be due to quantum fluctuations of the vacuum energy.

However, a new study by a team of European scientists explored these ideas further. They wanted to see what would happen when they measure the deceleration parameter – the measurement of cosmic acceleration – from our...

Continue Reading...

Tuning Cells for Health and Wellness

science news Jan 08, 2020
by William Brown, Resonance Science Foundation Research Scientist

Resonance-based technologies utilize harmonic interactions to effortlessly produce significant effects. This is why the potential for applications in energy production is so promising: methods employing harmonic resonance can do more with less energy. Additionally, technologies employing harmonic resonance offer a potential means for benefiting health and wellness of the biological system without deleterious side-effects.

With such potential applications, Torus Tech is developing the resonant modulation capabilities of its plasma-hydrodynamic and harmonic frequency technologies to direct beneficial signaling in the extra-cellular matrix for restorative and bio-regenerative therapies. Such techniques offer a highly efficacious and non-invasive method to restore healthy operations of the body and to target specific conditions such as injury and cancer.

The extra-cellular matrix (ECM) is a part of the body-wide...

Continue Reading...

Was a Star Ejected from Our Central Black Hole?

by Dr. Amira Val Baker, Resonance Science Foundation Astrophysicist

Generally thought to be the point of no return, our very own black hole seems to have ejected a star at hyper velocity.

In something known as the Hills mechanism – which occurs in binary star systems when they are disrupted by a super massive black hole – the stars are pulled apart and left to continue on their separate journeys. The closest star is pulled into an orbit around the black hole while the other is ejected at extremely high velocity. However, although this was proposed in 1988 by astronomer Jack Hills, it has never been confirmed.

Now, a worldwide team of scientists led by Ting Li have observed what they believe to be the first example of such a mechanism.

The team utilised data from the 3.9 metre Anglo-Australian Telescope as part of the Southern Stellar Stream Spectroscopic Survey – a survey that aims to map the kinematics and chemistry of long, dense regions of stars, known as...

Continue Reading...

The Force of the Vacuum

by Dr. Inés Urdaneta, Resonance Science Foundation Research Scientist

One of the most common physical manifestations of the vacuums’ force is the Casimir effect, which was first predicted by the Dutch physicist Hendrik Casimir in 1948, and measured for the first time by Steven Lamoreaux in 1996. Nonetheless, the physical interpretation and whether or not the effect comes from the vacuum fluctuations, is still under discussion in theories of quantum gravity and quantum electrodynamics. It also remains a mystery that the energy density of the vacuum is so high it should act gravitationally to produce a large cosmological constant, as well as curving spacetime. And yet, there is a difference of 122 orders of magnitude between the classical vacuum represented by the cosmological constant, and the quantum vacuum energy density. This discrepancy is known as the Vacuum catastrophe (Investigation of the gravitational property of the quantum vacuum may explain the accelerating...

Continue Reading...

Could the Information Paradox Finally Be Resolved?

by Dr. Amira Val Baker, Resonance Science Foundation Astrophysicist

The information paradox may finally be resolved with the help of the holographic theory – but this time on a fractal scale.

Ever since Hawking predicted the thermal emission of black holes and their subsequent evaporation, the question arose as to where this information goes. In the context of the Copenhagen interpretation of quantum mechanics – which states that the information about a system is entirely encoded in its wave function – information is always conserved. Thus, any loss in information, like that predicted by Hawking and his evaporating black holes, would violate quantum theory. This problem is known as the information paradox.

To resolve this paradox, physicists have been actively looking for a mechanism to explain how the information of the infalling particles re-emerges in the outgoing radiation. To begin, they need to determine the entropy of the Hawking radiation.

Assuming the...

Continue Reading...
1 2 3 4 5 6 7 8 9

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.