Science Videos Events Forum About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

An Eventful Horizon

Scientists utilize elements of the Haramein Quantum Gravity Holographic Solution to solve the Black Hole Information Loss Paradox


By: William Brown, scientist at the Resonance Science Foundation

In our quotidian experience the feature of spacetime locality seems to be an indelible feature of a rational reality; the idea that effects follow their causes, which we know from special relativity requires that no signal or information travel faster than the speed of light. If a signal were to travel faster than the speed of light, an effect might precede its cause—so for instance a superluminal spaceship could make a roundtrip voyage and return to a frame-of-reference where it had not yet departed. The problem with locality, no matter how indelible it seems to our rational, is that both quantum physics and relativity theory have properties that seemingly permit non-local interactions: in the former there are Einstein Podolsky Rosen (EPR) correlations, and in the latter, there...

Continue Reading...

Anomalous Hall effect in Antiferromagnetic Crystal May Enable Computation with Atomic Spin

By: William Brown, Biophysicist at the Resonance Science Foundation

Digital Computations are based on the ability to read, write, and erase an on/off state in a material, representing the ‘0’ and ‘1’ of binary data. In today’s integrated circuits, this is achieved via transistors, which are semiconductor materials— like silicon or germanium (tetrahedral elements)— that can switch electrical signals to an “on” or “off” state and therefore function as the binary state, or logic gate in a digital computation.

In this way, the metal-oxide-silicon transistors in integrated circuits forms the memory cells of the chips, and because of the relative ease of fabrication, scalability, and low-power consumption such chips are found in nearly all digital electronic devices, from smartphones to TVs. The civilization-scale effect of this functional material with easily controlled binary state cannot be overstated, as even...

Continue Reading...

Novel Material Found to Contain Electronically Accessible Continuous Memory

By: William Brown, Biophysicist at the Resonance Science Foundation


The information processes underlying physical systems— from organized matter to biological organisms— involves a self-organizing dynamic emerging from specific properties of the substantive medium of space. We have identified these properties as: intercommunicability, memory / hysteresis, iterative feedback-feedforward mechanisms, retrocausal influences, and nonlocal interactions, the gestalt of which we refer to as spacememory [1].


In our publication The Unified Spacememory Network, we identify and describe properties of space that endow it with memory, a property that is required for complexification of physical systems (evolution and development of the universe)— which is integrally related to the emergent property of time— and info-entropy dynamics that engender morphogenesis, intelligence, and sentient systems like human beings.  This property of space is due in part to...

Continue Reading...

Controlling the Quantum Vacuum for Energy Transfer and Functional Casimir Devices

Researchers Devise Method to Control Quantum Vacuum Fluctuations for Unidirectional Energy Transfer Between Two Nanodevices


By: William Brown, Biophysicist at the Resonance Science Foundation

A fundamental outcome of quantum field theory is the prediction of an ever-present non-zero energy in the vacuum state. In classical physics, a vacuum is totally devoid of energy or substance. In modern physics, all forces and associated particles are field-like, and their manifestation is a result of excitations of the respective quantum field. As such, according to quantum field theory, even in a vacuum there are quantum fields, and importantly these fields are always undergoing random excitations, even at the point where there should be zero energy—i.e., there are constitutive zero-point energy fluctuations.

These quantum vacuum energy fluctuations are not trivial, in the theory of Quantum Chromodynamics (QCD) they are what gives hadrons, like the proton, their mass. Within QCD...

Continue Reading...

DNA-guided Construction of Superconductive Carbon Nanotubes

By: William Brown, Biophysicist at the Resonance Science Foundation

The utilization of superconductive materials offers the possibility for significant technological advancement if the phenomenon can be harnessed in a cost-effective manner. The problem: most materials only enter the superconductive state under ultra-low temperatures or ultra-high pressures (see Dr. Ines Urdaneta’s RSF article on superconductivity at high pressures). Maintaining such environmental conditions are an engineering challenge and are cost-prohibitive for applications in personal-use technologies, like ultra-fast home computers and communications devices, or public infrastructure like mag-lev transit and electrical transmission (greatly reducing wasted energy and hence energy usage while simultaneously increasing feasibility of nearly perfectly efficient energy distribution).

For superconductivity to move beyond niche applications a room-temperature superconductor is required, and the quest to...

Continue Reading...

Astronomers Report Findings as Mega-telescope Delivers the First Data

By: William Brown, Biophysicist at the Resonance Science Foundation

Perhaps one of the most noble pursuits that humankind engages in is observational astronomy, borne by unbounded curiosity and the pure enjoyment that comes from viewing the wonders of the cosmos, the discovery rewards the spirit and the intellect, because when we view the Universe, we are in fact coming to better understand ourselves. To further this noble and enlightening pursuit, NASA’s Goddard Space Flight Center has successfully deployed one of humanity’s most technologically advanced “eye on the universe”, the James Webb Space Telescope—a technological marvel— with the first images having been revealed on July 11th.

 

The stated mission:
The James Webb Space Telescope (sometimes called JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope, with longer wavelength coverage and greatly improved...

Continue Reading...

Additional Commentary on the Stimulated Unruh Effect: Studying Quantum Effects in Gravitational Fields

By: William Brown, Biophysicist at the Resonance Science Foundation

In a previous article RSF physicist Dr. Ines Urdaneta discussed a proposed study for probing the Unruh effect with quantum optics [1]. Because of the importance of experiments that will probe quantum effects in gravitational fields and to further elucidate the nature of the quantum vacuum, we will take another look at this proposed experiment and expound on some of the key insights of the study.

As Dr. Urdaneta explained in the previous article, the importance of probing the Unruh effect has to do with its relationship to quantum gravitational effects via the equivalence principle first described by Albert Einstein. Einstein is well known for his seminal work on the theory of relativity, which regards the behavior of clocks and rulers under accelerating and non-accelerating frames of reference, and the relativity of simultaneity that results from the invariance of the speed of light relative to any...

Continue Reading...

Ionization of Gravitational Atoms

By: William Brown, Biophysicist at the Resonance Science Foundation

Stellar mass black holes, like elementary particles, are remarkably simple objects. They have three primary observable properties: mass, spin, and electric charge. The similarities with elementary particles, like the proton, doesn’t stop there, as stellar mass black holes in binary systems can also form bound and unbound states due to interaction of orbital clouds (from boson condensates), uncannily analogous to the behavior and properties of atoms.  

The spin of stellar mass black holes is a particularly significant property, as black holes have rapid rotations that generate a region of space called the ergosphere around the event horizon, where the torque on spacetime is so great that an object would have to travel at a velocity exceeding the speed of light just to stay in a stationary orbit. Analysis of this region has resulted in some interesting physics predictions, one being the phenomenon of...

Continue Reading...

Convergent Function of Retrotransposons in Octopus Brain Drive Sophisticated Cognitive Capabilities

By: William Brown, Biophysicist at the Resonance Science Foundation

Compared to humans the Octopus is in many ways alien, it is an invertebrate with the only hard part being a chitinous beak, it has eight arms where most of its neuronal tissue—or brain—is located, and in many species, it can shape-shift and change the color of its integument to match its surrounding with near perfect adaptive camouflage. However, despite the many differences, many octopus species do share one similarity with that of humans: sophisticated cognitive capabilities, including problem solving, fore-thought, and creative ingenuity.

Since Octopus species have a rather large evolutionary distance from humans, mammals, or even vertebrates, a study of the cellular and molecular underpinning of their sophisticated cognitive capabilities can give us insight into what specific mechanisms enable and drive intelligence in animals. Interestingly, the molecular underpinnings of neuronal plasticity...

Continue Reading...

First Continuous Matter Wave Laser-Analog Generated from Regenerative Bose-Einstein Condensation Technique

By: William Brown, Biophysicist at the Resonance Science Foundation

Lasers are a well-known technology that have found myriad applications in all aspects of our lives, from sensors used in homes and stores, to advanced physics probes like LIGO that detected the first gravitational waves, and of course information technologies involving memory storage, retrieval, and data transmissions, to name but a few examples. Laser is an acronym for light amplification by stimulated emission of radiation, a technique that utilizes the wave-like nature of light, in which photon wave-packets that are of the same wavelength and phase (matching wave crest-to-crest and trough-to-trough, called constructive interference) can be combined and amplify the magnitude or strength of the light. The electromagnetic radiation is in a coherent state, and this is possible as well because photons obey what are known as Bose statistics, a quantum mechanical property of matter that allow Bose particles...

Continue Reading...
1 2 3 4 5 6
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.