Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

A New Estimate of The Gravitational Constant Using Resonating Beams

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Why do apples fall from the trees? This was one of the first questions that led to a revolution in our understandings of physics in general and the fundamental forces of nature in particular. The answer according to eminent physicist Isaac Newton is the gravitational force. But what determines the strength of the gravitational force or for that matter any fundamental force? There is a coupling constant that is uniquely associated with every force and which is also responsible for determining the strength of its interaction.

Several experiments have been conducted to determine the value of the constant associated with the gravitational force but none have been accurate enough to the satisfaction of the physics community. Although the experiments have continually tried to advance the precision aspect, the value of G is the least precise of all the four basic forces, the reason being simple, that it interacts very...

Continue Reading...

Convergent Function of Retrotransposons in Octopus Brain Drive Sophisticated Cognitive Capabilities

By: William Brown, Biophysicist at the Resonance Science Foundation

Compared to humans the Octopus is in many ways alien, it is an invertebrate with the only hard part being a chitinous beak, it has eight arms where most of its neuronal tissue—or brain—is located, and in many species, it can shape-shift and change the color of its integument to match its surrounding with near perfect adaptive camouflage. However, despite the many differences, many octopus species do share one similarity with that of humans: sophisticated cognitive capabilities, including problem solving, fore-thought, and creative ingenuity.

Since Octopus species have a rather large evolutionary distance from humans, mammals, or even vertebrates, a study of the cellular and molecular underpinning of their sophisticated cognitive capabilities can give us insight into what specific mechanisms enable and drive intelligence in animals. Interestingly, the molecular underpinnings of neuronal plasticity...

Continue Reading...

LaMDA, the Sentient AI that Google May Have Created …

By Inés Urdaneta, Physicist at Resonance Science Foundation

A couple of weeks ago the world was overwhelmed by the news regarding the possibility that Google had created a sentient AI, and their resistance to investigate the ethical implications about the topic is being discussed in many forums. There are plenty of articles, videos and interviews addressing why Lemoine considered LaMDA to be sentient, and why Google and others assure this is not the case. As Lemoine explains here, this is not the most relevant aspect of the controversy.

If Google did create a sentient AI or not, it’s a huge discussion ... most complex scenario, let’s say it did, which would mean that the sentient AI is having feelings about events and interactions that it has not experienced directly and yet, it has developed “its own perspective” or experience about them. There seems to be an autoreferential frame, or realization of self-awareness, or at least it makes us perceive it...

Continue Reading...

Cooling Down Carbon Molecules Using a Laser

Credit: VENTRIS/Science Photo Library via Getty Images

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Quantum mechanics prohibits any quantum system from achieving a temperature that is equal to absolute zero.  However, using Laser cooling, which is a highly efficient spectroscopic technique, atomic samples could be cooled to near absolute zero thus bringing them to their lowest achievable quantum energy state. Scientists have been advancing this technique for decades now and an important question that arose recently is whether carbon molecules, which are an integral component of life on earth, could be laser-cooled.  

In order to cool down any atom or molecule using a laser the first step is to understand the mechanism behind the absorption and emission of light. Knowing this is important because the same process is responsible for reducing the kinetic energy of the atom/molecule and bringing it to the lowest possible energy state (look at the...

Continue Reading...

First Continuous Matter Wave Laser-Analog Generated from Regenerative Bose-Einstein Condensation Technique

By: William Brown, Biophysicist at the Resonance Science Foundation

Lasers are a well-known technology that have found myriad applications in all aspects of our lives, from sensors used in homes and stores, to advanced physics probes like LIGO that detected the first gravitational waves, and of course information technologies involving memory storage, retrieval, and data transmissions, to name but a few examples. Laser is an acronym for light amplification by stimulated emission of radiation, a technique that utilizes the wave-like nature of light, in which photon wave-packets that are of the same wavelength and phase (matching wave crest-to-crest and trough-to-trough, called constructive interference) can be combined and amplify the magnitude or strength of the light. The electromagnetic radiation is in a coherent state, and this is possible as well because photons obey what are known as Bose statistics, a quantum mechanical property of matter that allow Bose particles...

Continue Reading...

Scaling of Quantum Computing to Macroscopic Regime is Closer!

By Inés Urdaneta, Physicist at Resonance Science Foundation

The Illinois‐Express Quantum Network (IEQNET), a collaboration that includes the DOE's Fermi National Accelerator and Argonne National laboratories, Northwestern University and Caltech, has achieved the first steps toward a functional long-distance quantum network running on telecom fiber optics. Using local fiber optics, the team of researchers successfully deployed the quantum network between two U.S. Department of Energy (DOE) laboratories, 50 kilometers apart.

In this system, information is encoded through quantum entangled photons, and the challenge remains in being able to transfer this information across distances and scales without losing coherence, feature that guarantees that there has been no loss of information. Preserving information is key to any informatic system; all our digital activities require that the information transfer is securely transferred.

A way of measuring the degree of information...

Continue Reading...

Tetraneutron: A New Resonant State of Matter?

Credit: Andrey Shirokov, Moscow State University

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Tetraneutron, as the name suggests, is a hypothesized cluster of four neutrons bounded together as a single and compact stable system. It is generally believed that the tetraneutron state is not a long-lived phenomenon and would be observed for a temporary period which is less than a billionth of a trillionth of a second and ultimately gets decayed. Scientists call this state a resonance, as viewed from the window of particle physics. Also, from the theoretical standpoint, the existence of this 4-neutron state is not much supported by the standard mainstream models of nuclear forces and its physical existence would also mean that the foundations of our understandings regarding nuclear forces and their interactions would have to be significantly revised.

Now, a team of researchers from the Technical University of Darmstadt in Germany has published a paper in Nature...

Continue Reading...

Mitochondria in Photoreceptor Cells Found to Focus Light and Function as an Optical Microlens

By: William Brown, Biophysicist at the Resonance Science Foundation

Mitochondria are most well known as the energy producing organelles of the cell, producing chemical energy via ATP production in all Eukaryotic species. However, mitochondria have a much broader role than simple centers of energy production in the cell and play critical roles in a range of processes from controlling cell fate via programmed cell death (called apoptosis)—central to tissue morphogenesis and anti-tumorigenic regulation— to regulating gene expression (via modulating metabolite concentrations like cyclic AMP), to name but a few of the multitudinous cellular processes involving this dynamic organelle.

Because of the ancestral nature as an endosymbiont, mitochondria are extremely active within cells and are even described as exhibiting social behaviors [1]—indicating high levels of complex information processing with intercommunication and coordination of activity [2]— so much...

Continue Reading...

A Brief History of the Electron

Image source: exciton’s probability cloud showing where the electron is most likely to be found around the hole.  

By Inés Urdaneta, Physicist at Resonance Science Foundation

Whereas our direct experience with protons in everyday life is not evident at all, our experience with electrons is quite different. Many of us are probably familiar with the phenomenon of static electricity that bristles our skin when we rub certain materials. We are also probably used to the notion of electricity as a current or flow of electrons that can light a bulb, turn on an electrical device, or even electrocute someone if not handled properly. We are probably also aware that matter is composed of atoms, and that atoms are composed mainly of protons and electrons. Most of our daily experience is governed by electrons and their interactions with light. Electrons also govern the physico-chemical properties of atoms. Interestingly, the inference and discovery of the electron predates the...

Continue Reading...

Scientists Perform a Novel Test of Quantum Electrodynamics with 100 Times Greater Accuracy

Credit: ScienceClic

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Predictions of theoretical physics can’t be proved in a true sense but can only be verified to accurate levels of precision through experimental tests and modelling. There are several theories being proposed by people in the scientific community to explain the features of a particular phenomenon but only a few get lucky and stand the test of time. Quantum electrodynamics (QED) is one of the most precise theories of physics and is also the first theory that has achieved a proper and viable correlation between quantum mechanics and special relativity.

QED explains many features of quantum systems and their interaction. For example, electrons, which are elementary particles characterized by a negative charge and intrinsic spin, communicate with the atomic nucleus of an atom through the exchange of particles of light or photons. This interaction and interrelationship between the electron and...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.