Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

First Spatiotemporal Map of Galactic Local Region Reveals Mechanisms of Star Formation

By: William Brown, Biophysicist at the Resonance Science Foundation

Most studies of star formation—the “birth” of new stars—have been performed using static 2-dimensional photographs of star forming regions, or nebulae. Now, a new study using 3-D space motions that map stars in 3 dimensions of space, motion, and time astronomers have been able to generate a spatiotemporal map that reveales stars in our local region of the galaxy forming along the surface of an approximately 1000 light year wide bubble [1]. The stars in our “Local Bubble” are all moving away from a central point that appeared to form from several supernovae about 14 million years ago, which triggered expanding shockwaves that initiated condensation of interstellar gases into the discrete surface region of the bubble. The supernovae shockwaves—carrying all the heavy elements of the supernova metallogenesis—are responsible for triggering new star formation via the...

Continue Reading...

Study Finds Mobile Genetic Elements Rewiring Genomes

By: William Brown, Biophysicist at the Resonance Science Foundation

A study published in the journal Science has described the generation of a genetic transcription factor by fusion of a pre-existing gene with the transposase exon of a mobile genetic element [1]. Mobile, or transposable genetic elements cut-and-paste or copy-and-paste their genetic sequence into various sites throughout a genome using a transposase enzyme that they code for. In a survey of all tetrapod (vertebrate animals) genomes available the study identified 106 host-transposase fusion events, in which during transposition, transposase sequences were inserted into a pre-existing gene, resulting in alternative splicing of the gene generating novel functional proteins— many of which are involved in transcriptional regulation. Since transcriptional regulators interact simultaneously with large numbers of genes, up-regulating or down-regulating their expression in the gene network, such events can result in...

Continue Reading...

New Study Describes Invariance of the Correlation Structure of Grid Cell Modules in a Manifold with Toroidal Topology

 By: William Brown, Biophysicist at the Resonance Science Foundation

The part of our brain that is responsible for coding memories—the hippocampal formation— has a complex and specialized system of cells that continuously updates position and direction, generating cognitive maps of our surroundings as we navigate the world. New research published in the journal Nature has shown that the joint activity of neuronal cells that form spatial mapping circuits reside on a toroidal manifold, such that positions on the torus correspond to positions of the environment through which an individual is moving [1].

Neurological studies have shown that the hippocampal formation, which includes the hippocampus and entorhinal cortex, contains a diverse array of cell types that support spatial navigation and memory. A key component of this system is the hippocampal place cell, which encodes an animal’s presence at a particular spatial location to support navigation and encoding...

Continue Reading...

Rotating Black Holes May Serve as Portals for Interstellar Travel

  

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

 

By means of numerical simulations and computational calculations, a team from the University of Massachusetts Dartmouth and Georgia Gwinnett College observed that rotating black holes can be traversable. The results were published in Phys. Rev. D, and the calculations were made by Caroline Mallary, student of the research team's director, Gaurav Khanna. 

Mallary wanted to test whether Cooper (played by Matthew McConaughey) in Christopher Nolan's movie Interstellar, could survive the plummet into Gargantua - a fictional, rotating, supermassive black hole about 100 million times the mass of our sun. The physical properties of this black hole were taken from the book written by Nobel laureate Kip Thorne, on which the film was based. 

These mysterious creatures called black holes, are regions in space where there is an enormous accumulation of energy/matter, concentrated in such a...

Continue Reading...

Pulsar Network Reveals Indications of Gravitational Wave Background Permeating Spacetime

By: William Brown, Biophysicist at the Resonance Science Foundation

The confirmation of gravitational waves back in 2015 has opened an entire new field of observational astronomy—in which the detection and analysis of gravitational waves will enable the study of truly remarkable cosmological processes such as black hole mergers, supermassive black hole binaries, the spacetime structure of black hole event horizons, and even possible wormholes. Gravitational waves may seem exotic, but it is thought that there should be a constitutive low-level gravitational wave background that emanates from the summation of all the activity of black hole binaries throughout the galaxy—like the stochastic sound of a crowded room buzzing with chatter, except in this case space and time are subtly stretching and compressing all around us with a constant flux of spacetime waves.


In an effort to detect and confirm this hypothesized gravitational wave background, The North American Nanohertz...

Continue Reading...

Euler's 36-Piece Puzzle has a Quantum Solution!

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

What is this 240-year-old problem all about?

Leonhard Euler (1707 - 1783), Swiss mathematician and physicist, is most popularly known for his glorious equation called Euler's Identity: e + 1 = 0, depicted below.

Geometric interpretation of Euler's identity, where i represents the imaginary axis of the complex plane and φ is the angle.

Euler’s contributions in mathematics have been indispensable for the development of physics, particularly in quantum mechanics. As if that were not enough, now the quantum solution to Euler’s puzzle will probably mark a milestone in quantum computation, and in information theory. The puzzle as such consists of the following: Euler had examined the problem of having six different regiments, each with six officers of different ranks,  and he wondered if these 36 officers can be arranged in a 6x6 square, so that each row and column contains one officer of...

Continue Reading...

A New Signature of a Multiply Connected Universe

By: William Brown, Biophysicist at the Resonance Science Foundation

Scientists have measured an upper-bound to the size of the Universe using the Cosmic Microwave Background (CMB) temperature gradient field [1]. The results show that the universe is most likely multiply connected, which means that it is finite, and the topology is such that it closes back in on itself—such that on the largest scale the universe has the geometry of a torus (and has a global positive curvature). This is contrary to the conventional cosmological models of the universe that model it as spatially infinite and topologically flat—assumed parameters that the researchers of the latest study demonstrate do not match the CMB temperature gradient data.


If the universe were spatially infinite and topologically flat, then the temperature fluctuations seen in the CMB would occur across all size scales—however this is not what is observed in the data. If, instead, the universe has a finite size...

Continue Reading...

Turning Matter Invisible!

Image: Pixabay

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

By manipulating quantum properties in atoms, scientist at MIT were able to prevent a sample of Litium atoms (6Li) from scattering light, therefore, turning it invisible! In other words, the capacity of the atoms to scatter light, was suppressed ...

This effect was predicted theoretically 30 years ago, and it is an example of a phenomenon called Pauli blocking, based on the Pauli exclusion principle, where electrons in atoms are forbidden to occupy the same quantum state. In standard conditions, electrons in an atom are arranged and localized in such a way that they are all distinguishable from each other; they cannot superpose. This is a property of fermionic particles; they all have different quantum states (identified by quantum numbers) and so they are distinguishable.

If the electrons in an atom where like people in a hotel room, each person would be identified with 4 numbers (the four quantum...

Continue Reading...

Experiment Shows Possibility of Using Multicellular Organism the Tardigrade in Probing Macroscopic Quantum States

Tardigrade revived after most inhospitable conditions yet documented for the meiofauna organism, setting a record for the conditions under which a complex form of life can survive.


By: William Brown, Biophysicist at the Resonance Science Foundation

A new study has claimed to have taken a tardigrade— a microscopic multicellular organism known to tolerate extreme physiochemical conditions via a latent state of life known as cryptobiosis—and prepared it in a type of superconducting Josephson junction known as a transmission line shunted plasma oscillation qubit, or transmon for short, causing the tardigrade (in the suspended cryptobiosis state) to purportedly become entangled in the qubit system.

Figure from: K. S. Lee et al., “Entanglement between superconducting qubits and a tardigrade,” arXiv:2112.07978 [physics, physics:quant-ph], Dec. 2021, Accessed: Jan. 03, 2022. [Online]. Available: http://arxiv.org/abs/2112.07978

When the suspended tardigrade was...

Continue Reading...

Education Shapes Creativity!

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

A recent study published in Nature, comparing traditional education to Montessori, has quantified statistically their impact on creativity and deep learning. This study examines for the first time, whether educational differences shape knowledge representation and its corresponding creative abilities.

“Education is central to the acquisition of knowledge, such as when children learn new concepts. It is unknown, however, whether educational differences impact not only what concepts children learn, but how those concepts come to be represented in semantic memory—a system that supports higher cognitive functions, such as creative thinking” [1].

As explained in the study, early experience determines cognitive and emotional outcomes, because in this period of high brain plasticity, children acquire knowledge efficiently through mechanisms that are significantly determined by interactions with the...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.