Science Videos Events Forum About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Ionization of Gravitational Atoms

By: William Brown, Biophysicist at the Resonance Science Foundation

Stellar mass black holes, like elementary particles, are remarkably simple objects. They have three primary observable properties: mass, spin, and electric charge. The similarities with elementary particles, like the proton, doesn’t stop there, as stellar mass black holes in binary systems can also form bound and unbound states due to interaction of orbital clouds (from boson condensates), uncannily analogous to the behavior and properties of atoms.  

The spin of stellar mass black holes is a particularly significant property, as black holes have rapid rotations that generate a region of space called the ergosphere around the event horizon, where the torque on spacetime is so great that an object would have to travel at a velocity exceeding the speed of light just to stay in a stationary orbit. Analysis of this region has resulted in some interesting physics predictions, one being the phenomenon of...

Continue Reading...

Quantum Simulator Reveals New State of Matter Possible with Topological Spin Liquids

By Resonance Science Foundation biophysicist William Brown

Quantum spin liquids are exotic phases of matter that offer potential applications in robust quantum information processing with topological qubits. Quantum spin liquids are a phase of matter that feature long-range quantum entanglement involving the magnetic dipoles, or spin, of electrons. Unlike in conventional magnets where the magnetic dipoles of electrons all align and freeze into place, electrons in this new exotic phase are constantly changing and fluctuating like a liquid— leading to one of the most entangled states of matter ever conceived. 

Until recent investigations it was unknown if such a highly quantum correlated magnetic state could be realized in an actual physical system. Now, using a 219-atom programmable quantum simulator a team of Harvard researchers have shown that quantum matter and protected quantum information processing are possible with topological spin liquids. Their findings...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.