Science Videos Events Forum About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Study Finds Human Gene Linked to Larger Brains Arose from Non-Protein Coding (“Junk”) DNA

Researchers have discovered a key process by which new genes from non-protein coding DNA undergoes mutations to enable export from the nucleus into the cellular cytoplasm where the new gene can be translated into novel polypeptides. In the new study the researchers have shown that far from being accessories, new gene products are often integral in key phenotype characteristics, such as larger brains in human-specific de novo genes from non-protein coding DNA. But before such genes can become novel protein products, they must change to escape the nuclear localization fated for long non-coding RNA sequences: the study elucidates the mutations involved in enabling nuclear export where the new gene can access the translational machinery of the ribosome, and demonstrates via knock-out and overexpression experiments the functional role of novo genes from non-protein coding DNA in organism development, like the enlargement of the cerebral cortex in humans.  

By: William Brown,...
Continue Reading...

Convergent Function of Retrotransposons in Octopus Brain Drive Sophisticated Cognitive Capabilities

By: William Brown, Biophysicist at the Resonance Science Foundation

Compared to humans the Octopus is in many ways alien, it is an invertebrate with the only hard part being a chitinous beak, it has eight arms where most of its neuronal tissue—or brain—is located, and in many species, it can shape-shift and change the color of its integument to match its surrounding with near perfect adaptive camouflage. However, despite the many differences, many octopus species do share one similarity with that of humans: sophisticated cognitive capabilities, including problem solving, fore-thought, and creative ingenuity.

Since Octopus species have a rather large evolutionary distance from humans, mammals, or even vertebrates, a study of the cellular and molecular underpinning of their sophisticated cognitive capabilities can give us insight into what specific mechanisms enable and drive intelligence in animals. Interestingly, the molecular underpinnings of neuronal plasticity...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.