Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Cosmic Inflation: Boon or Bane?

Credit: Zosia Rostomian


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

Cosmic inflation is a theory governing the dynamics of the early universe, moments after the grand cosmic event called the Big Bang. MIT physicist Alan Guth was the first one to propose the inflationary theory in the early 1980s however, it was later advanced by other influential physicists like Andrei Linde and Paul Steinhardt [1-3]. The theory mainly deals with the exponential expansion of space and subsequently the large-scale structure formation in the universe during its evolutionary stages. It is also suggested by the theory that the epoch of inflation lasted from 10−36 seconds to sometime between 10−33 and 10−32 seconds after the Big Bang. But in order to articulate the events following the Big Bang admirably, one needs to have a full-fledged quantum theory of gravity, which is yet a substantial challenge for physicists.  

So far,...

Continue Reading...

Ultracold Quantum Vortices are a Proof of Superfluidity

Credit: Ella Maru Studio 


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

A vortex is a physical phenomenon in fluid dynamics wherein flows in a region of a fluid revolve around a fixed axis. On the macroscopic level, vortices are easily observed as whirlpools, tornadoes, and smoke rings however, they also form on microscopic regimes as quantized objects. In the former case, classical laws completely govern the dynamics of vortices but in the latter, there is a deviation from classical to quantum behaviour since the temperature at which quantum fluids exist is low enough that the laws of quantum mechanics predominate. 

Vortices display dynamical motion and such vortices are also characterized by certain physical properties like mass, energy as well linear and angular momentum. Previous work has revealed multiple facets of vortices and their interactions in different physical conditions. Citing a few instances – physicists have...

Continue Reading...

Measurement of Time Using the Wave-like Nature Emerging from Quantum States of Rydberg Atoms

Credit: NIST  


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation  

One of the aspects of nature that has fascinated thinkers for centuries is time. Luminary physicist Isaac Newton considered time to be an absolute entity i.e., the same for all places in the universe and independent of observers. This notion was very crucial for the advent of Newtonian mechanics. The concept of absolute time paves the way for another term called absolute space, which according to Newtonian conviction are two separate facets of objective reality not dependent on each other. However, this idea about time and space underwent a major alteration after Einstein came up with his influential theory of relativity, which changed the very foundations of how we thought of time, space and their interactions with physical events.  

Time, which is regarded as a fourth dimension after the introduction of Einstein’s relativity theory, generally...

Continue Reading...

Physical Factors that Help in Categorizing Planets as Earth-like Systems

Credit: NASA/JPL-Caltech 


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

A planet that orbits a solar-type star and supposedly is a part of a solar system like ours with goldilocks conditions capable of supporting life and liquid water is commonly referred to as an exoplanet. The first exoplanet that was discovered to be revolving around a star like our sun was 51 Pegasi b. It is located about 50 light-years away in the Pegasus constellation and was discovered in 1995 by Swiss astronomers Michel Mayor and Didier Queloz [1]. This discovery won them a share of the 2019 Nobel prize in physics. Since the first detection, thousands of exoplanets have been discovered by probes sent to interstellar space by agencies like NASA. 

Several factors are responsible for determining whether a newly discovered planet could be categorised as Earth-like. Here is a step-wise breakdown of all the important processes that scientists adopt in the classification of...

Continue Reading...

Puzzle Regarding the Inner Structure of Protons

Credit: CERN


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Protons are amongst the most puzzling and intriguing particles in the universe. It has been an established scientific fact that protons are made up of a further combination of two up and one down quarks. These quarks are also held together through a binding particle called a gluon, which mediates the strong nuclear force. Collectively quarks and gluons are called partons. Although protons have an inner substructure there’s still a lack of knowledge about what exactly is the overall nature of its inner foundation. A reason for this might be that new experimental probes keep indicating new data.

Currently, in the mainstream, physicists have been surprised by a lot of problems associated with the properties of protons, one of which is called the proton radius puzzle. This paradox deals with the size of the proton. Several probes have come up with a different value for the radius of the proton and...

Continue Reading...

Manipulating Quantum Laws to Create Efficient Quantum Devices and Enhancing Quantum Communication Technology

Credit: American Physical Society  


 By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

This year’s Nobel prize in physics has been awarded to three physicists for fundamental discoveries in the foundations of quantum mechanics. Specifically, it has been awarded for proving the violation of Bell’s inequalities through experiments involving the entanglement of photons, and the advancement of the science of quantum information, in general, brought about by the discoveries. RSF Physicist Dr. Ines Urdaneta has already described this year’s Nobel prize in her latest article. The reader is advised to check it out for more details.  

In this article, our focus is on the manipulation of this fundamental knowledge posed by some of the related work in the creation of efficient quantum devices. Our aim is to discuss some of the recent progress in quantum technology which apparently builds on the laws of quantum mechanics and...

Continue Reading...

Galactic Engines

Active galactic nuclei feedback drives the formation and evolution of galaxies
By RSF scientists Dr. Inés Urdaneta, Amal Pushp (affiliate researcher), and William Brown

For over 25 years physicist Nassim Haramein has been describing primordial black holes as the organizational nuclei of physical systems across scale, from the micro to the cosmological. The reasoning is straight-forward, black holes function as the organizational nucleus for organized matter because they are engines of mass-energy generation and their spin—we discuss this in detail in a later section regarding the Haramein-Rauscher spacetime metric—produces a highly coherent region of quantized spacetime that has a specific ordering parameter. This applies for organized matter across scale—see Haramein’s paper on a Scaling law for Organized Matter [1]—from particles [2-4], to planets, stars, galaxies, and the universe itself [5]. Within the last few decades, in verification of...

Continue Reading...

Quark-Gluon Plasma and the Size of the Nucleons

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation  

The atomic nucleus of an atom consists of protons and neutrons bound together via strong nuclear interaction. Due to this, protons and neutrons are also called nucleons. Furthermore, protons and neutrons have inner substructure and consist of a combination of up and down quarks as well as gluons, which are particles mediating the strong force. Physicists usually probe the structure of nucleons with particle collisions in accelerators. Specifically, the development of the quark model in particle physics emerged by investigating the deep inelastic scattering of electrons on protons and bound neutrons for which the investigators were also awarded a Nobel prize back in 1990.  

What happens when we heat atomic nuclei at high temperatures? We eventually achieve a new state of matter called quark-gluon plasma. Quark-gluon plasma may be defined as a state of matter in which the elementary...

Continue Reading...

The Puzzle of Baryon Asymmetry and the Cosmic Origin of Matter

Credit: M. Weiss / Harvard-Smithsonian Center for Astrophysics

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

At the very beginning of our universe, a short phase after the big bang, everything is supposed to have existed in the form of a hot soup of particles, presumably containing equal proportions of matter and anti-matter. As the universe expanded in size, the overall temperature lowered and particles coalesced together to form the various structures that we detect with our modern-day astronomical instruments and technology. 

Anti-matter, which is basically the opposite of matter, in most respects behaves just like its matter counterpart, the only key difference is in the charge that it carries. For example, the anti-particle of the electron, a negatively charged particle, is called the positron, which as the name suggests is positively charged. An interaction between electron and positron causes annihilation leaving just photonic radiation behind....

Continue Reading...

Scattering Amplitudes Help Physicists Investigate the Behaviour of Sound Waves through Solids

Credit: Grant Remmen

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Scattering amplitudes are a quantum field theoretic concept that allows the computation and representation of various scattering processes involved in particle physics. It is basically a probability amplitude, an entirely mathematical concept, that aids the description of elementary particles and their associated physical systems. This highly rigorous technique is being utilized as a research tool in various subfields of theoretical physics like Yang-Mills theory, Chern-Simons theory, Supergravity (SUGRA), etc.

Conventionally, such computations have been probed using Feynman diagrams, however, it has a limited range of applicability and that’s where scattering amplitudes come in and express their overarching role. For instance, to describe the interactions of fundamental particles, one would have to manually fit thousands of Feynman diagrams into the computer which would make the...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.