Science Videos Events Forum About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Quark-Gluon Plasma and the Size of the Nucleons

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation  

The atomic nucleus of an atom consists of protons and neutrons bound together via strong nuclear interaction. Due to this, protons and neutrons are also called nucleons. Furthermore, protons and neutrons have inner substructure and consist of a combination of up and down quarks as well as gluons, which are particles mediating the strong force. Physicists usually probe the structure of nucleons with particle collisions in accelerators. Specifically, the development of the quark model in particle physics emerged by investigating the deep inelastic scattering of electrons on protons and bound neutrons for which the investigators were also awarded a Nobel prize back in 1990.  

What happens when we heat atomic nuclei at high temperatures? We eventually achieve a new state of matter called quark-gluon plasma. Quark-gluon plasma may be defined as a state of matter in which the elementary...

Continue Reading...

Atomic Clocks and Quantum Time Reversal

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

The quantum world essentially contains a myriad of intriguing phenomena and continues to add up to the imagination of science explorers. One such phenomenon concerns the oscillations at the level of atoms which forms the basis for the creation of quantum devices like atomic clocks and sensors. The elements that are used in modern day atomic clocks involve ytterbium, caesium among others. A significant part of the advances in contemporary atomic clocks research is mainly because of its usability in certain scenarios like dark matter and gravitational wave detections. 

Due to the subtle nature of these physical events, sometimes unwanted noise from the surrounding environment can cause distortions in the signal and negatively impact the results. In order to overcome this major challenge, physicists from the Massachusetts Institute of Technology (MIT) have come up with a viable proposition and that is to use a...

Continue Reading...

Tetraneutron: A New Resonant State of Matter?

Credit: Andrey Shirokov, Moscow State University

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation

Tetraneutron, as the name suggests, is a hypothesized cluster of four neutrons bounded together as a single and compact stable system. It is generally believed that the tetraneutron state is not a long-lived phenomenon and would be observed for a temporary period which is less than a billionth of a trillionth of a second and ultimately gets decayed. Scientists call this state a resonance, as viewed from the window of particle physics. Also, from the theoretical standpoint, the existence of this 4-neutron state is not much supported by the standard mainstream models of nuclear forces and its physical existence would also mean that the foundations of our understandings regarding nuclear forces and their interactions would have to be significantly revised.

Now, a team of researchers from the Technical University of Darmstadt in Germany has published a paper in Nature...

Continue Reading...

A Brief History of the Electron

Image source: exciton’s probability cloud showing where the electron is most likely to be found around the hole.  

By Inés Urdaneta, Physicist at Resonance Science Foundation

Whereas our direct experience with protons in everyday life is not evident at all, our experience with electrons is quite different. Many of us are probably familiar with the phenomenon of static electricity that bristles our skin when we rub certain materials. We are also probably used to the notion of electricity as a current or flow of electrons that can light a bulb, turn on an electrical device, or even electrocute someone if not handled properly. We are probably also aware that matter is composed of atoms, and that atoms are composed mainly of protons and electrons. Most of our daily experience is governed by electrons and their interactions with light. Electrons also govern the physico-chemical properties of atoms. Interestingly, the inference and discovery of the electron predates the...

Continue Reading...

Measuring the Curvature of Space-time Using Time Dilation at Atomic Scale

By physicist Dr. Inés Urdaneta and biophysicist William Brown, research scientists at Resonance Science Foundation

Although quantum mechanics— the physics governing the atomic scale— and relativity— the physics governing the cosmological scale— are still viewed as disparate regimes within the Standard Model (as the Haramein holographic quantum gravitational solution has not reached wide-spread mainstream appeal as of yet), experiments on the quantum scale are reaching the capability of measuring relativistic effects, therefore connecting in practice, what remains disconnected in theory.

Such is the case of the recently observed gravitational Aharonov-Bohm effect—a quantum probe for gravity. In the electromagnetic version of the Aharonov-Bohm effect (in which the highly nonlocal quantum effect was first predicted) an electrically charged particle is affected by an electromagnetic potential, despite being confined to a region in which both the...

Continue Reading...

Turning Matter Invisible!

Image: Pixabay

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

By manipulating quantum properties in atoms, scientist at MIT were able to prevent a sample of Litium atoms (6Li) from scattering light, therefore, turning it invisible! In other words, the capacity of the atoms to scatter light, was suppressed ...

This effect was predicted theoretically 30 years ago, and it is an example of a phenomenon called Pauli blocking, based on the Pauli exclusion principle, where electrons in atoms are forbidden to occupy the same quantum state. In standard conditions, electrons in an atom are arranged and localized in such a way that they are all distinguishable from each other; they cannot superpose. This is a property of fermionic particles; they all have different quantum states (identified by quantum numbers) and so they are distinguishable.

If the electrons in an atom where like people in a hotel room, each person would be identified with 4 numbers (the four quantum...

Continue Reading...

Quantum Simulator Reveals New State of Matter Possible with Topological Spin Liquids

By Resonance Science Foundation biophysicist William Brown

Quantum spin liquids are exotic phases of matter that offer potential applications in robust quantum information processing with topological qubits. Quantum spin liquids are a phase of matter that feature long-range quantum entanglement involving the magnetic dipoles, or spin, of electrons. Unlike in conventional magnets where the magnetic dipoles of electrons all align and freeze into place, electrons in this new exotic phase are constantly changing and fluctuating like a liquid— leading to one of the most entangled states of matter ever conceived. 

Until recent investigations it was unknown if such a highly quantum correlated magnetic state could be realized in an actual physical system. Now, using a 219-atom programmable quantum simulator a team of Harvard researchers have shown that quantum matter and protected quantum information processing are possible with topological spin liquids. Their findings...

Continue Reading...

Warp Field Mechanics of the Dynamic Vacuum

By biophysicist William Brown, research scientist at RSF

Crawl-walk-run. This is the motto of Harold "Sonny" White— former director at NASA's Eagleworks division for advanced propulsion physics research— to put into perspective the proper technological progression required for developing a warp drive. True to this grounded perspective on how a remarkable civilization-changing technology can become a reality, Dr. White has published empirical simulation data of a nanometer scale warp bubble— a spacetime geometry that enables novel propulsion via gravitational control— that albeit too small for practical applications of propulsion, is experimental indication that the energy density requirements for a warp drive are technologically feasible.  

This is an important demonstration, as a common objection to warp drive technology—and even the use of wormholes—is the seeming requirement for negative energy densities, which many physicists...

Continue Reading...

CODATA Proton Charge Radius; The History Of This Fundamental Measurement. 

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

It’s been almost two years since the charge radius of the proton was finally confirmed experimentally by a September 2019 study from Eric Hessels, of York University in Canada, and his colleagues.  

In his 2013 paper entitled Quantum gravity and the holographic mass, Nassim Haramein had anticipated this value, by proposing a generalized holographic model that enables us to compute the now-confirmed value for the proton charge radius, which was then adjusted by the CODATA (Committee on Data for Science and Technology) to that same value in 2018. This all is part of the so-called Proton Puzzle, which we will address in this article.  

Since the nucleus of a hydrogen atom consists of a single proton and this atom has only one electron, hydrogen is a suitable platform for determining the proton’s intrinsic properties, such as the proton charge radius, which is the spatial extent of the...

Continue Reading...

New Machine Learning Method Raises Questions on the Nature of Reality… Again

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

Machine learning and artificial intelligence are increasingly taking the stage, with huge philosophical implications. We have been following this issue in our RSF science blog, first through the article Between the Holographic Approach and Data Science where we addressed the potential of trained artificial neural networks to replace our scientific models, and the possibility of reality being a numerical simulation was discussed. Somehow we had anticipated the work from Vitaly Vanchurin, from the University of Minnesota Duluth, proposing that we live in a neural network and affirming that only through neural networks we could find the theory of everything and grand unification theory. So, our second article entitled Is the universe a Neural network? addressed this later possibility.  

Today it was published in Phys.org an article entitled New machine learning method raises question on nature of science which...

Continue Reading...
1 2 3 4 5 6
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.