Science Videos Events Forum About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Another Validation of Haramein’s Theory: Physicists Confirm that Black Holes Admit Vortex Structure!

By Dr. Inés Urdaneta, Physicist at Resonance Science Foundation

Understanding the microscopic structure of black holes has been a challenge for physicists. The recent work from Gia Dvali, Florian Kühnel and Michael Zantedeschi entitled Vortexes in Black Holes, and published in Physics Review Letters, is providing a framework from which such understanding can be attained, while at the same time validating Nassim Haramein’s holographic approach.

Dvali et al. propose that black holes could be understood as a graviton condensate at the critical point of a quantum phase transition, based both on a graviton-condensate description of a black hole and on a correspondence between black holes and generic objects with maximal entropy compatible with unitarity; the so-called saturons. Saturons are a saturated state collective behavior of gravitons, i.e., a Bose Einstein Condensate (BEC) of gravitons, situation that is possible when gravitons are confined in a volume of space,...

Continue Reading...

The Generalized Holographic Model, Part I: The Holographic Principle

By Dr. Inés Urdaneta, Physicist at Resonance Science Foundation

The holographic principle is one of the first introductions of the idea that information may be present holographically within certain structures in the universe — namely, black holes. At this point, one may start to notice how the scientific narrative has been progressively and very subtly switching from terms like energy, forces, particles, and fields, to this word: information.

When we think of information, we think of computers and programming and bits of information, expressed in values of 0 or 1 in a binary system. This all is a subset of a larger field called information theory, whose goal is to explain all features of reality as emerging from information exchange and its properties.

This article explores further the topic, giving a brief overview of the history and development of the holographic principle behind the fundamental concept of the generalized holographic model developed by Nassim...

Continue Reading...

What is Resonance and Why is it so Important?

Image: Linden Gledhill, a Philadelphia-based pharmaceutical biochemist creates incredible cymatic pattterns with sound, water and light. 

By Inés Urdaneta, Physicist at Resonance Science Foundation

Resonance is experienced, and even identified as the process being responsible for the forms of what we perceive, observe, or infer based on it - an atom, a flower, planets, galaxies -. It binds together the different elements that make up physical reality and allows interaction between them. It is the main factor for feedback to be possible, the conduit, shall we say, through which the exchange of information happens: the external can penetrate the internal, and the internal can manifest outside. The condition for that channel to be available, is the coincidence in energy; that the inner and outer energies are compatible. i. e., that they have the same frequency.

 

Source of Image: https://www.abc.net.au/science/articles/2014/06/16/4022877.htm

 

In general, we...

Continue Reading...

Tunable Quantum Entanglement in Stimulated Hawking Radiation in an Analog White-Black Hole Pair

Main image credit: Artist rendering of optical systems containing the analog of a pair white-black hole. 2021 PhD alumnus Anthony Brady, postdoctoral researcher at the University of Arizona
By: William Brown, Biophysicist at the Resonance Science Foundation

Black holes are instrumental in the study of the unification of Quantum Mechanics and General Relativity because they are macroscopic quantum objects—essentially like large particles (which should give a clue that particles are small black holes). In a black hole construct one can study the effects of strong gravity and quantum field theory in a singular system, enabling one to understand both in a singular framework. This also means, however, that one needs a unified theory of quantum gravity to fully understand black holes (and other quantum systems). 

The thermodynamics and quantum information (or entropy) of a black hole are of key consideration, especially the relationship between the information comprising...

Continue Reading...

Evidence of Black Holes Forming Galaxies is Mounting!

Image from ESA, the European Space Agency.


By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

In just one week, two very important studies have shed light on the now irrevocable fact that black holes in the center of galaxies are playing a predominant role in the galaxy formation, event that would explain why astronomers and astrophysicists have found a black hole in the center of galaxies.

In a former RSF article entitled “Supermassive Black Holes Birthing Stars at Furious Rate’ we had addressed the case in which astronomers have observed supermassive black holes creating star-forming regions. Since 2017 a team of astrophysicists have been observing supermassive black holes, and the possibility that these entities could be birthing stars, finding evidence of new star birth from material being ejected from the black hole, called an outflow. An outflow of gas could be responsible for creating new stars by swirling around the center of the black...

Continue Reading...

The First Image of a Black Hole is Finally Here!

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

For some time now we have been following the Event Horizon Telescope initiative (EHT) aiming at the obtention of the first image of the EH of a Black Hole (BH) for Sagittarius A (Sag. A*), located at the center of our own galaxy, the milky way. Given the fact that Sag. A* nuclei is much less active that Messier 87 (M87*), the image reported first is that of M87*. Even though M87* is 2000 times farther away, it is 2000 times more massive. This compensates exactly the distance, with a higher nuclei activity allowing a better resolution and faster data analysis than Sag. A*.

So finally, the day has come! The moment couldn't be more exciting. First EHT results for the shadow of the BH, which is 55 million light years away from Earth, with a mass 6.5 billion times the mass of our Sun and located at the center of M87*, have been announced worldwide today, April 10th 2019, at the same time by different press...

Continue Reading...

A Deeper Look into Black Holes

by Dr. Amira Val Baker, Resonance Science Foundation Astrophysicist

A deeper look into one of the most intriguing objects has just been revealed.

Black holes are typically observed by the light given off by the surrounding material, such as accretion disks or high velocity jets known as quasars. In 2015, this was extended to gravitational waves when the first gravitational wave was detected from the merger of a pair of black holes.

Then, last year the first direct picture of a black hole was revealed which captured the shadow of the black hole on the accretion disc. Read more here.

Now a recent international study, led by Dr William Alston of the Cambridge University, has taken it one step further, allowing us to peer into a black hole deeper than ever before.

Utilizing a technique known as X-ray reverberation mapping, the team of scientists set about observing the highly variable active galactic nuclei (AGN) IRAS 13224-3809. Located a mere billion light years away, the bright AGN...

Continue Reading...

Supermassive Black Holes Birthing Stars at “Furious Rate”!

By Dr. Inés Urdaneta / Physicist at Resonance Science Foundation

We have been increasingly hearing much more about black holes and their role in the cosmos.

Black holes are exotic creatures, mainly classified in two types according to their size: stellar black holes (up to tenths of solar masses) and supermassive black holes (billions of solar masses). We commonly used to believe that, independent of their size, black holes all share the same feature: they devour everything getting too close and entering their event horizon.

For decades, astronomers have looked for galaxy clusters containing rich nurseries of stars in their central galaxies. Instead, they found powerful, giant black holes bursting out energy through jets of high-energy particles. Extremely hot particles emanating from these black holes were found to be preventing the formation of stars. So where are all the stars coming from?

The leading theories have proposed two mechanism to elucidate this mystery. One...

Continue Reading...

Life Giving Black Holes

by Dr. Amira Val Baker, Resonance Science Foundation Research Scientist

Those hungry, all devouring black holes may in fact be much more generous than we have been led to believe.

Black holes are often given bad press. This, however, is not indicative to their true nature, which is in fact quite stable. A team of scientists are now looking to do away with all the bad press and have proposed that black holes are in fact life givers.

Traditionally when thinking about life in the universe – other than our own – we look to stars and something known as the Goldilocks zone. Like its namesake, the Goldilocks zone is not too hot and not too cold – it’s just right. That is, the temperature is just right for liquid water and thus life to exist. Albeit, these assumptions about what is just right for life to exist are just that –assumptions – based on what we know as life.

It is now known that the central nuclei of galaxies are home to a super massive black...

Continue Reading...

Black holes – to be or not to be?

by Dr. Amira Val Baker, Resonance Science Foundation Research Scientist 

Those enigmatic black holes that lead to places unknown may not be what we thought they were – or at least that’s what some scientists think.

Since first proposed in 1784 by John Mitchell and their prediction in 1915 by Einstein’s theory of general relativity, evidence supporting the idea of black holes has continued to be found.

Described as infinitely dense points in space time – where not even light can escape – the presence of a black hole is thus inferred from the gravitational effects on the surrounding material. But what if something else – other than a black hole – could produce these same effects?

Such a question was addressed in two recent papers by a team of scientists at the University of Hawaii. They consider the consequences of replacing all black holes with a class of objects with ‘dark energy’ interiors known as Generic Objects of Dark...

Continue Reading...
1 2
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.