Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Quantum Physics Working at the Macroscopic Scale

Article by Dr. Olivier Alirol, Resonance Science Foundation Research Scientist

Quantum physics is the general term for a set of physical approaches born in the 20th century which, like the theory of relativity, marks a break with what is now called classical physics. Thus, the so-called “quantum theory” describes the often non-intuitive behaviors of atoms, photons and other particles – something that classical physics could not do.

Today, we know how to produce, using experimental optic methods, twin photon pairs whose properties are perfectly described by quantum physics. Although composed of two particles, these objects must be considered as a whole, from the moment photons are created to the moment they are detected. This quantum phenomenon is fundamental for example in quantum optics because classical physics does not allow any correlation. It is therefore necessary to deeply understand not only their origin, but above all which external parameters could...

Continue Reading...

An Approach to Manipulate Small Objects with Light

Article by Dr. Olivier Alirol, Resonance Science Foundation Research Scientist

Suspected from the outset Kepler’s observations of comet tails, the fact that light exerts forces on matter, and therefore on objects is now well established. Thanks to the work of Arthur Ashkin among many others, optical traps are now a reality. Using laser beams optical levitation of microspheres is used nowadays in many applications from stretching DNA to nanotechnology, spectroscopy, stochastic thermodynamics and critical Casimir forces.

Structuring light makes optical manipulation techniques possible, like using the Spatial Light Modulators (SLMs) to produce holographic optical traps (HOTs). These Spatial Light Modulators are liquid crystal technology with a fast and precise control of the beam shape used to control multiple particles in 2D and 3D configurations.

Previously holographic traps were limited to particular classes of light (scalar light), so it is very exciting that we can reveal a...

Continue Reading...

Time Crystals: A New Form Of Matter That Could Change Everything!

Article by Dr. Amira Val Baker, Astrophysicist, Resonance Science Foundation Research Scientist

Of all the science-fiction-sounding names that have come to fruition in recent years, perhaps none is as mysterious or seemingly fictitious as time crystals. The name evokes something between Back to the Future and Donnie Darko, and the reality is perhaps crazier than either.

Two separate groups of scientists recently reported that they observed time crystals, which lends credence to the idea that this theoretical state of matter is something humans can actually create and observe. And indeed, time crystals can be grown in a child’s bedroom.

However, it requires nuclear sensors and lasers to help time crystals reach their full potential and then measure and observe them. This combination of dramatic scientific terms and shockingly simple objects is a great analogy for time crystals as a whole.

Read on to understand what they are and how they might affect our lives.

...
Continue Reading...

New Measurement of the Roundness of the Electron

Article by Dr. Oliver Alirol, Physicist, Resonance Science Foundation Research Scientist

Point particle, electron cloud, if the electron is actually a physical object with a finite size, then how big is it. Surprisingly, there is yet no clear answer to this simple question. However, some theories turn out to be pretty interesting such as the Bohr radius (10-10m), the classical electron radius (10-15m), the Compton Wavelength (10-12m), the Planck length (point particle 10-35m), or finally the empiricist’s view with the measurement of the electron electric dipole moment (EDM).

Some theories suggest that some subatomic particles outside the electron could create a slight separation between a positive and a charge, giving the electron a pear shape. However, a new measurement from the ACME team at Yale suggests that any extra particles that exist may be permanently beyond the LHC’s reach.

We’re gonna need a bigger tunnel.

Yale University physicist David DeMille, a...

Continue Reading...

A Physics Nobel Prize for a New Way of Manipulating Light

by Dr. Olivier Alirol, Physicist, Resonance Science Foundation Research Scientist

Three scientists on Tuesday won the Nobel Physics Prize, including the first woman to receive the prestigious award in 55 years, for inventing Chirped-pulse amplification, or CPA. The 9-million-Swedish-kronor award (about $1 million) will be doled out to Arthur Ashkin of Bell Laboratories in Holmdel, N.J., Gérard Mourou of École Polytechnique in Palaiseau, France, and Donna Strickland of the University of Waterloo in Canada.

This is a technique for creating ultrashort, yet extremely high-energy laser pulses necessary in a variety of applications. It is remarkable what can be achieved with lasers in research and in applications, and there are many good reasons for it, including their coherence, frequency stability, and controllability, but for some applications, the thing that really matters is raw power.

With this he was able to use the radiation pressure of light to move tiny...

Continue Reading...

Quantum Mechanics Defies Causal Order, Experiment Confirms

Article by William Brown, Biophysicist, Resonance Science Foundation Research Scientist

An experiment has confirmed that quantum mechanics allows events to occur with no definite causal order. The work has been carried out by Jacqui RomeroFabio Costa and colleagues at the University of Queensland in Australia, who say that gaining a better understanding of this indefinite causal order could offer a route towards a theory that combines Einstein’s general theory of relativity with quantum mechanics

In classical physics – and everyday life – there is a strict causal relationship between consecutive events. If a second event (B) happens after a first event (A), for example, then Bcannot affect the outcome of A. This relationship, however, breaks down in quantum mechanics because the temporal spread of a particles’s wave function can be greater than the separation in time between and B. This means that the causal order...

Continue Reading...

Either This Data is Incorrect or These Physicists Just Changed the World

A paper posted to arXiv last month claims to have achieved superconductivity at room temperature, but other physicists say the data may be incorrect.

When it comes to applied quantum mechanics, there are two “holy grails” in the field.

One is building a large scale quantum computer and the other is achieving superconductivity above the freezing point of water, colloquially known as room temperature superconductivity. Superconductors are materials that have no electrical resistance—meaning that electrons can flow through the object unimpeded—but so far physicists have only been able to achieve superconductivity by bringing the materials to incredibly cold temperatures. If superconductivity could be harnessed at room temperature, it would allow for the free transport of energy, wildly faster computers, and incredibly precise sensors. Indeed, it would fundamentally change the world.

In July, Dev Thapa and Anshu Pandey, two well-regarded chemical physicists from...

Continue Reading...

Schwarzites: Long-Sought Carbon Structure Joins Graphene, Fullerene Family

The discovery of buckyballs surprised and delighted chemists in the 1980s, nanotubes jazzed physicists in the 1990s, and graphene charged up materials scientists in the 2000s, but one nanoscale carbon structure – a negatively curved surface called a schwarzite – has eluded everyone. Until now.

UC Berkeley chemists have proved that three carbon structures recently created by scientists in South Korea and Japan are in fact the long-sought schwarzites, which researchers predict will have unique electrical and storage properties like those now being discovered in buckminsterfullerenes (buckyballs or fullerenes for short), nanotubes and graphene.

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide – sand – more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting...

Continue Reading...

Dark Matter Particles Elude Scientists in the Biggest Search of its Kind

Article by Emily Conover

The largest particle detector of its kind has failed to turn up any hints of dark matter, despite searching for about a year.

Known as XENON1T, the experiment is designed to detect elusive dark matter particles, which are thought to make up most of the matter in the cosmos. Physicists don’t know what dark matter is. One of the most popular explanations is a particle called a WIMP, short for weakly interacting massive particle. XENON1T searches for WIMPs crashing into atomic nuclei in 1,300 kilograms of chilled liquid xenon. But XENON1T saw no such collisions. The particles’ absence further winnowed down their possible hiding places by placing new limits on how frequently WIMPs can interact with nuclei depending on their mass.

Researchers describe the results May 28 in two talks, one at Gran Sasso National Laboratory in Italy, where XENON1T is located, and the other at the European particle physics lab CERN in Geneva. XENON1T...

Continue Reading...

Detection of Echoes of Gravitational Waves Support Planck-Scale Structure of Spacetime Predicted by Quantum Gravity

Article by Edwin Cartlidge, science writer based in the UK

The first detection of gravitational waves in 2015 created huge excitement because it confirmed a long-standing prediction of Albert Einstein’s general theory of relativity and opened up a completely new way of observing the universe. Physicists have also been scrutinizing data from the growing number of gravitational-wave detections for “echoes” – the existence of which could mean that our understanding of relativity is incomplete. Physicists in Canada and Iran have found tentative evidence for such echoes gravitational waves from colliding black holes, and now say a stronger signal exists in data from colliding neutron stars.

“So far everyone who has looked for echoes has found them, including the LIGO group.”

—Niayesh Afshordi of the University of Waterloo and the Perimeter Institute for Theoretical Physics.

Many physicists believe that general relativity is incomplete...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.