Science Events About Research Courses BECOME A MEMBER Login


Science News
& Faculty Articles


Experiment Proposed to Demonstrate Traversable Wormhole Via Counterfactual Quantum Teleportation Protocol

By: William Brown, scientist at the Resonance Science Foundation

In previous original RSF articles we have discussed experiments that tested qubit teleportation via a traversable micro-wormhole, and teleportation of energy utilizing the intrinsic spatial correlation (quantum entanglement) of vacuum energy density. In each case, and indeed in all quantum teleportation experiments, the “sender” and “receiver” systems must exchange information first, and this exchange of information must, necessarily, occur via a classical channel (id est, at or below the speed of light). This means that while quantum teleportation is a clever method to leverage the kind of strong spatial correlation that only occurs in quantum systems to transfer an informational state or energy from one system to another with 100% fidelity, it is not the kind of teleportation we generally think of in which something is instantaneously transferred from on location to another or...
Continue Reading...

Reversing Quantum Processes Now Made Empirically Possible!

Credit: Shutterstock/Getty Images 

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

We are quite aware of the directionality of time. Everything we know of seems to follow a particular pattern and all events tend to move in a unidirectional path. In other words, it is conventionally known that once a particular event has occurred, there’s no chance that it can be reversed. The physical reason is simple and that is the arrow of time. In general, the arrow of time points in a single forward direction and this is one of the major unsolved challenges of the foundations of physics because physicists are uncertain of why the nature of time is such. 

Time as an entity can’t be controlled or manipulated. However, we can manipulate a physical system’s evolution in time and evaluate its metamorphosis from one state to another by careful observation, at least in the classical world. In the quantum domain, even...

Continue Reading...

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.