Science Events About Research Courses BECOME A MEMBER Login


Science News
& Faculty Articles


Empirically Derived Limit on Variations in the Fine-structure Constant

The physical constant alpha (α) has been described as one of the greatest mysteries of physics. Now, new measurements and analysis of spectra from Sun-like stars have produced the most precise astronomical test of alpha and hence potential locational variability in the strength of the electromagnetic interaction with charged particles. 

By: William Brown, scientist at the Resonance Science Foundation


How Constant are the Physical Constants of Nature?

Although the forces and physical constants of Nature have been measured and characterized to an astonishing level of precision, some big questions remain: what fundamental aspects of the universe give rise to the laws of Nature? Are the laws set from the beginning by some as-of-yet unidentified intrinsic and indelible relationship or mechanism, producing the seemingly fine-tuned physical parameters that give rise to organized matter and life? Are they immutable in time and space, or do they vary in...

Continue Reading...

What is the Fine-Structure Constant and How Do Physicists Compute it?

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

The fine structure constant, also called the Sommerfeld constant or electromagnetic coupling constant, is one of the fundamental physical constants that characterizes the strength of the electromagnetic interaction between charged atomic particles. The name of this constant was coined by physicist Arnold Sommerfeld who extended Bohr’s atomic model with the motivation of explaining the fine structure lines observed in the hydrogen spectra, which the previous models had failed to explain satisfactorily.   

Physical constants are generally of two types: one which has a proper unit associated with them and others that are dimensionless. The fine-structure constant is of the latter type, it is dimensionless and is represented by a number. Various probes have determined this number to be close to about 1/137.  

Physicists have estimated that the values of fundamental...

Continue Reading...

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.