Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

Experiment Proposed to Demonstrate Traversable Wormhole Via Counterfactual Quantum Teleportation Protocol

By: William Brown, scientist at the Resonance Science Foundation

In previous original RSF articles we have discussed experiments that tested qubit teleportation via a traversable micro-wormhole, and teleportation of energy utilizing the intrinsic spatial correlation (quantum entanglement) of vacuum energy density. In each case, and indeed in all quantum teleportation experiments, the “sender” and “receiver” systems must exchange information first, and this exchange of information must, necessarily, occur via a classical channel (id est, at or below the speed of light). This means that while quantum teleportation is a clever method to leverage the kind of strong spatial correlation that only occurs in quantum systems to transfer an informational state or energy from one system to another with 100% fidelity, it is not the kind of teleportation we generally think of in which something is instantaneously transferred from on location to another or...
Continue Reading...

Room-Temperature Ionic Liquids Show Piezoelectric Effects!

University of Massachusetts-Amherst/Lovley


By Dr. Inés Urdaneta, Physicist at Resonance Science Foundation

A team from Michigan State University have reported for the first time the piezoelectric effect in liquid phase. This was totally unexpected because, as it will be further explained in this article, the effect was thought to come solely from changes in the shape of a sample due to mechanical stress or pressure, and therefore, could only concern solids (such as certain crystals) and biological samples (such as bone).  

The fact that the effect was found in ionic rather than the common neutrally composed liquids, is probably a main factor for such a discovery, that may very well provide new physics understanding of the liquid phase in a broader sense.  

Ionic liquids (ILs) are salts in liquid state, meaning that these salts are “melted” in its ionic or charge components. Overall, the liquid is neutral, but its units are not neutral; they are ions,...

Continue Reading...

Vindicating the von Neumann Interpretation of Quantum Mechanics by Unveiling a Logical Inconsistency of the Dead-Alive Physicist “Gedanken” Experiment

By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

The foundations of quantum mechanics is a sub-discipline of quantum physics that essentially deals with questions concerning the nature of the wave function, whether the wave function represents an ontic or an epistemic state, the measurement problem and wavefunction collapse process, etc. One would come across several interpretations that have been proposed to address these problems, however, there’s a lack of substantial consensus among the physics community even after decades of work.  

Physicists and philosophers of physics continue to create novel models to explain quantum phenomena and bring about an interpretation that they believe to explain the internal dynamics of such phenomena. Recently, two physicists Carlo Roselli and Bruno Raffaele Stella proposed a thought experiment namely the Dead-Alive Physicist (DAP) and claimed that it falsifies the von Neumann...

Continue Reading...

Quantum Energy Teleportation Protocol

By Resonance Science Foundation scientists Dr. Inés Urdaneta & William Brown

It has been widely proven that the information of quantum states can be transported to remote locations through quantum teleportation. As such, it is well established that information states can be effectively teleported between two quantum systems, but what about other properties, like energy? Now, recent experiments have directly demonstrated the teleportation of energy by utilizing the spatial entanglement of quantum vacuum zero-point energy fluctuations. In addition to being a direct demonstration of the ability to leverage the intrinsic entanglement state of the quantum vacuum to teleport energy, the protocols have potential applications in a wide variety of quantum devices and quantum information technologies, like entanglement harvesting, considerations of the parallel of quantum energy teleportation with wormhole-qubit teleportation (ER = EPR), understanding quantum...

Continue Reading...

On the Magnetic Moment of Electron and its Significance for the Standard Model

Credit: IOP Publishing  


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

The magnetic moment of an electron is essentially an inherent property that emerges from the particle’s charge and spin. Physicists know that elementary particles like electrons display two kinds of angular momentum: orbital and spin which collectively is known as the spin-orbit coupling. This collective dynamical behavior further gives rise to the magnetic dipole moment or simply the magnetic moment. In fact, the magnetic dipole moment can also appear separately as spin and orbital magnetic dipole moment.  

In general, the magnetic moment can be described as a representation of the strength of any magnetic source. Consider a classical representation of an electron. Due to the charge distribution of the electron, which is essentially rotating, there is a creation of a magnetic dipole or in other words, the electron behaves as a microscopic bar magnet which...

Continue Reading...

Reversing Quantum Processes Now Made Empirically Possible!

Credit: Shutterstock/Getty Images 


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

We are quite aware of the directionality of time. Everything we know of seems to follow a particular pattern and all events tend to move in a unidirectional path. In other words, it is conventionally known that once a particular event has occurred, there’s no chance that it can be reversed. The physical reason is simple and that is the arrow of time. In general, the arrow of time points in a single forward direction and this is one of the major unsolved challenges of the foundations of physics because physicists are uncertain of why the nature of time is such. 

Time as an entity can’t be controlled or manipulated. However, we can manipulate a physical system’s evolution in time and evaluate its metamorphosis from one state to another by careful observation, at least in the classical world. In the quantum domain, even...

Continue Reading...

Evidence of Resonant Waves Found in Rat Brain Activity

 


By Dr. Inés Urdaneta, Physicist at Resonance Science Foundation

Using ultrafast and ultrahigh field magnetic resonance imaging (fMRI), researchers at the Champalimaud Foundation and the University of Minho have found evidence of resonant waves in rat brain activity. This means that the brain seems to be a resonant chamber where distant brain areas show correlated activations due to collective wave modes [1].

Many theoretical works have proposed models based on standing waves to explain the macroscopic patterns observed [2-5], though the nature of such activations remains unclear. To delve deeper into this mechanism and understand how distant areas exhibit signal correlations, and how they are implicated in brain function, experimental evidence required a better temporal resolution of the fMRI spectras to show the spatial pattern oscillations and prove the hypothesis that these macroscopic patterns result from the distinct or independent transient oscillation modes at...

Continue Reading...

Cherenkov Radiation Detected in 2D Regime

Credit: Argonne National Laboratory 


By Amal Pushp, Affiliate Physicist at the Resonance Science Foundation 

What happens when a high-speed jet displays motion that is essentially higher than the velocity of sound? One would hear a cracking sound commonly known as a sonic boom. Analogous to this phenomenon, there might exist something similar in the case of electromagnetic radiation as light and sound have a lot of commonalities considering their physical effects. In fact, there does exist a similar phenomenon in the case of light.  

When a charged particle like an electron travels faster than the phase velocity of light inside a water-bound nuclear reactor, there is an intense emission of blue light. This effect is called the Cherenkov effect named after the Soviet physicist Pavel Cherenkov who observed it for the first time in 1934. In a way, this is an optical analogue of the sonic boom effect that essentially relies upon shock waves. A full mathematical...

Continue Reading...

Anti-laser Engineered for Coherent Perfect Absorption of Light

 By: William Brown, scientist at the Resonance Science Foundation

In 2019, researchers from the Massachusetts Institute of Technology made headlines when they created the “blackest black” material made from carbon nanotubes—ten times blacker than any material that had been manufactured at that time—a material so black that it had the ability to absorb 99.995% of incident light. Such research in light absorption is not a trivial pursuit or mere aesthetics, there are many technologies that can benefit from maximizing light absorption—for instance, in photovoltaics because of the need to absorb and convert as much light as possible into electricity, or on the interior surface of a light sensor because of the need to minimize unwanted stray light. The physics of light absorption can get quite complex when you get into the details, as what we non-technically consider as “black” is usually not a perfect absorber. Indeed, there are many...

Continue Reading...

That Twist That Entangles All

Source of image https://newatlas.com/triple-quantum-entanglement-photons/42116/

In a study to appear in Physical Review Letters [1], researchers report that entangled photons traveling in corkscrew paths have resulted in holograms that offer the possibility of dense and ultrasecure data encryption.


By Dr. Inés Urdaneta, Physicist at Resonance Science Foundation

Commonly, there are two ways of having light carry information: through its polarization and through its angular momentum, in particular its orbital angular momentum (OAM).

The polarization concerns the geometrical orientation of light’s electromagnetic wave oscillations (of the electric and magnetic components of light). As explained in our former RSF article The origin of quantum mechanics I: The Electromagnetic field as a wave, an electromagnetic wave such as light (also known as electromagnetic radiation or EMR) consists of a coupled oscillating electric field and magnetic field which are always...

Continue Reading...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.